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We present a predictive scheme for the composition dependence of the thermal 
conductivity of mixtures containing polyatomic gases at zero density. This 
supplements earlier work which developed a method to interpolate for the 
composition dependence of dense gas mixtures, as well as an earlier procedure 
to calculate the thermal conductivity of mixtures of monatomic gases. In all 
cases, the algorithm makes use of accurately measured values of the thermal 
conductivity of pure gases and is validated with the aid of almost equal 
accurately measured values of selected binary mixtures. Such accurate data have 
been obtained mostly in transient hot-wire instruments. The formulae proposed 
for the calculations use the Monchick Pereira-Mason kinetic-theory analysis as 
a starting point but contain a number of detailed improvements. The present 
algorithm is tested by comparison with measurements on 22 mixtures, which 
show absolute average deviations from the predictions ranging from 0.7 to 
2.7 %, with one unexplained case, that of CF4-He mixtures, which show devia- 
tions reaching as much as 7 %. We estimate that the algorithm predicts the zero- 
density thermal conductivity of binary mixtures, containing at least one 
polyatomic component, with a probable error in the order of 2 %. 

KEY WORDS: binary mixtures; kinetic theory; polyatomic gas mixtures; 
thermal conductivity. 

1. I N T R O D U C T I O N  

O v e r  a b o u t  the  pas t  20 years  the  t r ans i en t  ho t -w i r e  m e t h o d  for  the 

m e a s u r e m e n t  of  the  t h e r m a l  c o n d u c t i v i t y  of  gases  has  been  d e v e l o p e d  in to  

the  m o s t  a c c u r a t e  t e c h n i q u e  ava i lab le .  T h e  m o d e r n  ve r s ion  of  the  m e t h o d  

was p i o n e e r e d  by  H a a r m a n  [ 1 ]  a n d  fu r the r  ref ined and  d e v e l o p e d  by  

Kes t in ,  W a k e h a m ,  a n d  thei r  c o - w o r k e r s  [ 2 - 6 ] .  A very  subs tan t i a l  b o d y  of  
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accurate data has by now been assembled, and in particular, many care- 
fully selected mixtures have been studied over the past 10 years, mostly 
near room temperature [7-18]. A leading motive for these mixture studies 
has been the hope of developing a reliable calculation procedure for the 
prediction of mixture thermal conductivities, since it is obviously a 
practical impossibility to carry out direct measurements on all mixtures 
that might be of interest. Only limited success has so far been achieved in 
the search for a predictive algorithm, as discussed in a review by Kestin 
and Wakeham [19]. They concluded that the main difficulty lay in the 
description of the limit of zero density, since an interpolation scheme [20] 
for the composition dependence of dense gas mixtures seemed to work well 
in most cases. 

The purpose of this paper is to present a predictive scheme for the 
composition dependence of the thermal conductivity of mixtures containing 
polyatomic gases in the limit of low density. It starts from the same kinetic- 
theory basis that previous attempts have used [19], but a careful analysis 
of the major sources of error allows us to produce several improvements 
that yield predictions whose accuracy is of the order of 2 %. While not as 
good as the experimental precision of about 0.3 %, this result should prove 
satisfactory for many purposes. 

2. T H E O R Y  

The starting point is the kinetic-theory analysis of Monchick et al. 
[21-1, which is a first-order solution of the semiclassical extension of the 
Boltzmann equation given by Wang Chang et al. [22]. As a first-order 
theory it contains a number of omissions and approximations, such as 
neglect of spin polarization, of "complex" collisions involving more than a 
single quantum jump, and of certain correlations between internal energy 
states and relative translational velocities. In addition, only first 
approximations for the constituent transport coefficients in terms of 
average cross sections are obtained. Even with these simplifications, the 
mixture formulas contain a large number of inelastic cross sections and 
relaxation times, which are known only poorly, if at all. There are three 
essential developments that enable us to obtain an accurate predictive 
algorithm from this approximate theory. 

(1) Use of the Monchick-Pereira-Mason Expressions as Interpolation 
Formulas Only. In particular, this means using the experimental values 
(or accurately calculated ones) of the thermal conductivities and viscosities 
of the pure components and dropping all the other explicit inelastic cross- 
section terms. The result is called the Hirschfelder-Eucken formula [21]; 
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the additional approximation is also made of replacing diffusion coefficients 
for internal energy by ordinary mass diffusion coefficients (only ratios of 
such diffusion coefficients occur). A great deal of testing and numerical 
experimentation has shown that the Hirschfelder-Eucken formula usually 
gives results very close to those of the full inelastic formulas, provided that 
both sets of formulas are forced to produce the same values for the pure 
components [7-19, 21]. In other words, the inelastic-collision terms do not 
change the shape of the curve of thermal conductivity as a function of 
composition very much; they only move it up or down [21]. 

This interpolation ploy takes care of most, but not all, of the deficien- 
cies of the original first-order theory. Unacceptably large errors can still 
appear when the masses of the components are very different. Correction 
for this effect constitutes the second development. 

(2) Disparate Mass-Ratio Correction. The error that arises with 
disparate masses is a convergence error in the usual sequence of kinetic- 
theory approximations. It has nothing to do with polyatomic gases as such 
and occurs even with mixtures of noble gases. The major source of this 
convergence error was identified long ago by Mason and Saxena [23] as 
occurring in the diffusional transport of energy by the light molecules in the 
presence of the heavy ones. They suggested that most of the error could be 
compensated by using a correct diffusion coefficient instead of its first 
approximation. This suggestion has been tested on several noble-gas 
mixtures and found to work well [24]. PresumaNy the same correction 
should also be applied to the coefficient that describes the diffusional 
transport of internal energy of the light molecules. 

(3) Availability of Accurate Input Data. These include the thermal 
conductivities, viscosities, and self-diffusion coefficients of the pure com- 
ponents, the binary diffusion coefficients of all the gas pairs, and three 
dimensionless ratios of collision integrals that characterize interactions 
between all the pairs (the quantities A*2, B~'2, and C'2). Most of these are 
available from recent extensive sets of corresponding-states correlations 
[25-28], including predictive combination rules [29] and correlations for 
mixture quantities [30]. Accurate values of all these quantities are 
necessary in order to calculate mixture thermal conductivities. 

As a result of these developments, the working formulas for the 
thermal conductivity of a mixture of N components are as follows: 

N I ~' x j D i i ] - I  
"~mix ~-  2mi~(mon) + ~ [2i-- 2i(mon)] 1 + 

i= i j = i x~D~A 
jvai 

(1) 
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in which the 4; are the experimental (or accurately calculated) thermal 
conductivities of the pure components, the x's are mole fractions, and the 
D's are diffusion coefficients. The 2~(mon) are hypothetical thermal 
conductivities that would be measured if the components behaved like 
monatomic gases. Thus 2mi~(mon) represents the translational contribution 
to the mixture conductivity and the second term (the sum) represents the 
contribution from the diffusive transport of internal energy. Notice that 
Eq. (1) automatically gives the correct limiting values; i.e., )~mix=2i if 
Xi = 1. The 2i(mon ) are to be calculated from experimental (or accurately 
calculated) values of viscosity ~/~, 

15 k 
2i(mon ) = -~- mZ rl i (2) 

where k is Boltzmann's constant and m; is the molecular mass of compo- 
nent i. Although Eq. (2) is based on only first-order kinetic theory, no 
correction for this fact needs to be made. The reason is that if 2i(mon) 
is slightly underestimated (say), then the internal contribution 
[2~-2i (mon)]  will be correspondingly overestimated, and the errors will 
compensate. 

The expression for 2mix(mon) is rather complicated: 

Lll. "'" L 1 N  Xl. L 1  " . . .  L 1  u - 1  

�9 ( 3 )  
2mi•176 L N 1  "'" L N N  L 1 " '"  L N N  

X 1 � 9  X N 

where the matrix elements are 

4x 2 16x i ~ xk 
L i i  - -  2/(mon) 25k nDek 

k = l  
k~-i  

25~2 3m2B * •  x (~m/2 + 7-"'k -- k ik -- (4) 
(mi+mk) 2 

16xi xj mimj ( -~ - -  3B*-  4A*) (5) 
L~(i ~ j ) -  25k nD~ (mi + mj) 2 

in which A* and B* are the dimensionless ratios already mentioned. They 
are to be calculated from the available correlation results [25, 30], if 
possible. The crucial factor related to the disparate-mass correction is the 
diffusion coefficient Dik for mi ~ mk that appears in Lii. 
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The remaining quantities needed are the diffusion coefficients D o . It is 
expected that they, too, will be calculated from the correlation results 
[25, 26, 30], according to the formula 

nDij=-~ k ~ m o /  a2f2~l,1) , 

where n is the total number density of the gas mixture (the results are 
actually independent of the value used for n), and m o is twice the reduced 
mass of the 0 pair, 

mij = 2 m i m j ( m i  + m s) (7) 

The quantities a 0 and ~!"~)* are given in the correlations. The higher- 
order correction factor f,j depends on the mixture composition and is the 
source of the disparate-mass correction. It can be calculated with adequate 
accuracy from the semiempirical expression [24] 

axi ) (8) 
f 0 =  1 + 1 .3(6C*-5)  2 Xi'awXJ "}-bxi 

2~/2 (2~'1)* (9) 
a = 811 + 1.8(ms~m;)] 2 (25f '2)* 

b = 10a[1 + 1.8(mJm;) + 3(mJm;)  2] - 1 (10) 

where C* and f2~ 2'2/* are given in the correlations. At first glance it appears 
that D o in Eq. (6) is not symmetric on interchange of the labels i and j 
because f,?. is not symmetric. Symmetry is not necessary in this case because 
the convention of mj~< m; biases the definition of fo" The magnitude of f0- 
for the self-diffusion coefficient D;; can be obtained with sufficient accuracy 
by setting x; = 1, xj = 0, and m s = m; in Eq. (8), although the correlations 
give a slightly more accurate formula if needed. This completes the 
specifications for the calculation of 2mi x. 

3. C O M P A R I S O N  W I T H  E X P E R I M E N T  

The available accurate experimental data are contained in Refs. 7 
through 18. All the measurements were made near room temperature with the 
sole exception of a few on N 2 CO2, which extend to 470 K [18]. We omit the 
mixtures containing H2, because H2 has not yet been included in the recent 
correlation schemes and we therefore lack accurate input data for this gas. 
There remain 21 binary mixtures, in 6 of which both components are 
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polyatomic. No  accurate data on multicomponent mixtures are available at 
present. 

The results are shown in Figs. 1-4 as deviation plots: (2expt - 2calc)/2calo 
as a function of the mole fraction of the first-named component. 

Figure 1 shows mixtures containing Nz and CO but not containing He 
or CO~. Of the eight mixtures, only three do not contain a monatomic gas 
as one component (N2-CH4, N2 CO, and CO-CH4).  No  deviation is as 
large as 2 %, and the average absolute deviation of the points shown is 
0.7%. 

Figure 2 shows other mixtures not containing He. Of the seven 
mixtures, only two do not contain a monatomic gas ( C O 2 - C H  4 and 
N 2 0 - C O 2 ) .  Here the deviations are a little greater than in Fig. 1, but the 
worst point is off by only about 3 %. The average absolute deviation of the 
points shown is 1.3 %. 

Figure 3 shows mixtures containing He, for which the disparate-mass 
effect is the largest. The system CF4-He shows large deviations, up to 
about 7 %, for which we can find no explanation. Perhaps they result from 
a fortuitous accumulation of errors, rather than a cancellation. Other than 
this system, the deviations are all smaller than 4%, with an average 
absolute deviation of 2.7 %. 
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Fig. 1. Deviations of the experimental mixture thermal conductivities from 
the calculated values, at 27.5~ unless otherwise noted. The mole fraction of 
the first-named component is xl. �9 N2-Ne [8]; • N2-Ar [8]; A, N2-Kr 
[8]; ~,  N2-CH 4 [12]; +,  N2-CO [15]; ~,  CO-Ne [16]; [], CO-Ar 
[16]; | CO-Ar, 35~ [11]; O, CO-CH4 [16]. 
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Fig. 2. Deviations of the experimental mixture thermal conductivities from 
the calculated values, at 27.5~ The mole fraction of the first-named 
component is xl.  O, CO2-Ne [10]; x ,  CO2-Ar [10]; * ,  CO2-CH 4 [13]; 
+ ,  N z O - C O  2 [15]; ~ ,  CH4-Ne [9]; [3, CH4-Ar [9]; O, CF4-Ar [17]. 
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Fig. 3. Deviations of the experimental thermal conductivities from the 
calculated values for mixtures containing He, at 27.5~ unless otherwise 
noted. The mole fraction of the first-named component is x:. +,  Nz-He 
[8]; , ,  CO-He  [16]; El, CO-He,  35~ [11]; O, CO2-He [10]; x ,  
CH4-He [7]; A, CFa-He [17]. 
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Deviations of the experimental mixture thermal conductivities from 

the calculated values for N2-CO2 mixtures at higher temperatures [-18 ]. The 
mole fraction of N2 is x 1. O, 320 K; • 380 K; •, 430 K; [], 470 K. 

Figure4 represents N2-CO 2 mixtures at higher temperatures (and 
presumably somewhat lower accuracy). Use of correlation values [27, 28] 
for the thermal conductivities of the single components rather than directly 
measured values shifts the deviations by less than 1%. The overall 
deviations are comparable to those shown in Figs. 1 and 2, with the worst 
deviation being about 3 % and the average absolute deviation being 2.0 %. 

4. CONCLUSIONS 

The general level of accuracy of the mixture formula is about 2 % but, 
generally, is somewhat worse for mixtures containing He. There are large 
deviations for CF4-He, which are unexplained. Outside of this system, the 
deviations are not particularly systematic, indicating that no single large 
effect remains unaccounted for. Improvements will probably be difficult to 
achieve, requiring consideration of higher-order kinetic-theory approxima- 
tions and more insight into the details and systematics of inelastic 
collisions, among other things. The present result should thus prove useful, 
and adequate for many purposes. 
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